| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjadj2co.1 |
|- F e. CH |
| 2 |
|
pjadj2co.2 |
|- G e. CH |
| 3 |
|
pjadj2co.3 |
|- H e. CH |
| 4 |
|
coass |
|- ( ( ( projh ` F ) o. ( projh ` G ) ) o. ( projh ` H ) ) = ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) |
| 5 |
4
|
fveq1i |
|- ( ( ( ( projh ` F ) o. ( projh ` G ) ) o. ( projh ` H ) ) ` A ) = ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) |
| 6 |
|
elin |
|- ( A e. ( F i^i ( G i^i H ) ) <-> ( A e. F /\ A e. ( G i^i H ) ) ) |
| 7 |
1
|
cheli |
|- ( A e. F -> A e. ~H ) |
| 8 |
7
|
adantr |
|- ( ( A e. F /\ A e. ( G i^i H ) ) -> A e. ~H ) |
| 9 |
1
|
pjfi |
|- ( projh ` F ) : ~H --> ~H |
| 10 |
2
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
| 11 |
3
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
| 12 |
10 11
|
hocofi |
|- ( ( projh ` G ) o. ( projh ` H ) ) : ~H --> ~H |
| 13 |
9 12
|
hocoi |
|- ( A e. ~H -> ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) = ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) ) |
| 14 |
8 13
|
syl |
|- ( ( A e. F /\ A e. ( G i^i H ) ) -> ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) = ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) ) |
| 15 |
2 3
|
pjclem4a |
|- ( A e. ( G i^i H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A ) |
| 16 |
|
eleq1 |
|- ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A -> ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) e. F <-> A e. F ) ) |
| 17 |
|
pjid |
|- ( ( F e. CH /\ ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) e. F ) -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) |
| 18 |
1 17
|
mpan |
|- ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) e. F -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) |
| 19 |
16 18
|
biimtrrdi |
|- ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A -> ( A e. F -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) ) |
| 20 |
|
eqeq2 |
|- ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A -> ( ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) <-> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = A ) ) |
| 21 |
19 20
|
sylibd |
|- ( ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A -> ( A e. F -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = A ) ) |
| 22 |
15 21
|
syl |
|- ( A e. ( G i^i H ) -> ( A e. F -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = A ) ) |
| 23 |
22
|
impcom |
|- ( ( A e. F /\ A e. ( G i^i H ) ) -> ( ( projh ` F ) ` ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) ) = A ) |
| 24 |
14 23
|
eqtrd |
|- ( ( A e. F /\ A e. ( G i^i H ) ) -> ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) = A ) |
| 25 |
6 24
|
sylbi |
|- ( A e. ( F i^i ( G i^i H ) ) -> ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) = A ) |
| 26 |
|
inass |
|- ( ( F i^i G ) i^i H ) = ( F i^i ( G i^i H ) ) |
| 27 |
25 26
|
eleq2s |
|- ( A e. ( ( F i^i G ) i^i H ) -> ( ( ( projh ` F ) o. ( ( projh ` G ) o. ( projh ` H ) ) ) ` A ) = A ) |
| 28 |
5 27
|
eqtrid |
|- ( A e. ( ( F i^i G ) i^i H ) -> ( ( ( ( projh ` F ) o. ( projh ` G ) ) o. ( projh ` H ) ) ` A ) = A ) |