Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
5 |
4
|
fveq1i |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
6 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐹 ∩ ( 𝐺 ∩ 𝐻 ) ) ↔ ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) ) |
7 |
1
|
cheli |
⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ ℋ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) → 𝐴 ∈ ℋ ) |
9 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐹 ) : ℋ ⟶ ℋ |
10 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
11 |
3
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
12 |
10 11
|
hocofi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
13 |
9 12
|
hocoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
14 |
8 13
|
syl |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
15 |
2 3
|
pjclem4a |
⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |
16 |
|
eleq1 |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹 ) ) |
17 |
|
pjid |
⊢ ( ( 𝐹 ∈ Cℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 ) → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
18 |
1 17
|
mpan |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
19 |
16 18
|
syl6bir |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ 𝐹 → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
20 |
|
eqeq2 |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) ) |
21 |
19 20
|
sylibd |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ 𝐹 → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) ) |
22 |
15 21
|
syl |
⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( 𝐴 ∈ 𝐹 → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) ) |
23 |
22
|
impcom |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐹 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) |
24 |
14 23
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 ) |
25 |
6 24
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝐹 ∩ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 ) |
26 |
|
inass |
⊢ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) = ( 𝐹 ∩ ( 𝐺 ∩ 𝐻 ) ) |
27 |
25 26
|
eleq2s |
⊢ ( 𝐴 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 ) |
28 |
5 27
|
syl5eq |
⊢ ( 𝐴 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |