Metamath Proof Explorer


Theorem pj3lem1

Description: Lemma for projection triplet theorem. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjadj2co.1 𝐹C
pjadj2co.2 𝐺C
pjadj2co.3 𝐻C
Assertion pj3lem1 ( 𝐴 ∈ ( ( 𝐹𝐺 ) ∩ 𝐻 ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 pjadj2co.1 𝐹C
2 pjadj2co.2 𝐺C
3 pjadj2co.3 𝐻C
4 coass ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
5 4 fveq1i ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 )
6 elin ( 𝐴 ∈ ( 𝐹 ∩ ( 𝐺𝐻 ) ) ↔ ( 𝐴𝐹𝐴 ∈ ( 𝐺𝐻 ) ) )
7 1 cheli ( 𝐴𝐹𝐴 ∈ ℋ )
8 7 adantr ( ( 𝐴𝐹𝐴 ∈ ( 𝐺𝐻 ) ) → 𝐴 ∈ ℋ )
9 1 pjfi ( proj𝐹 ) : ℋ ⟶ ℋ
10 2 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
11 3 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
12 10 11 hocofi ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) : ℋ ⟶ ℋ
13 9 12 hocoi ( 𝐴 ∈ ℋ → ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 ) = ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) )
14 8 13 syl ( ( 𝐴𝐹𝐴 ∈ ( 𝐺𝐻 ) ) → ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 ) = ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) )
15 2 3 pjclem4a ( 𝐴 ∈ ( 𝐺𝐻 ) → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 )
16 eleq1 ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹𝐴𝐹 ) )
17 pjid ( ( 𝐹C ∧ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 ) → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) )
18 1 17 mpan ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ∈ 𝐹 → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) )
19 16 18 syl6bir ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( 𝐴𝐹 → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) )
20 eqeq2 ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ↔ ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) )
21 19 20 sylibd ( ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 → ( 𝐴𝐹 → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) )
22 15 21 syl ( 𝐴 ∈ ( 𝐺𝐻 ) → ( 𝐴𝐹 → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) )
23 22 impcom ( ( 𝐴𝐹𝐴 ∈ ( 𝐺𝐻 ) ) → ( ( proj𝐹 ) ‘ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 )
24 14 23 eqtrd ( ( 𝐴𝐹𝐴 ∈ ( 𝐺𝐻 ) ) → ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 )
25 6 24 sylbi ( 𝐴 ∈ ( 𝐹 ∩ ( 𝐺𝐻 ) ) → ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 )
26 inass ( ( 𝐹𝐺 ) ∩ 𝐻 ) = ( 𝐹 ∩ ( 𝐺𝐻 ) )
27 25 26 eleq2s ( 𝐴 ∈ ( ( 𝐹𝐺 ) ∩ 𝐻 ) → ( ( ( proj𝐹 ) ∘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) ‘ 𝐴 ) = 𝐴 )
28 5 27 syl5eq ( 𝐴 ∈ ( ( 𝐹𝐺 ) ∩ 𝐻 ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ‘ 𝐴 ) = 𝐴 )