| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
| 2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
| 3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
| 4 |
1 2 3
|
pj2cocli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐹 ) |
| 5 |
4
|
adantl |
⊢ ( ( ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐹 ) |
| 6 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐹 ) : ℋ ⟶ ℋ |
| 7 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 8 |
6 7
|
hocofi |
⊢ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
| 9 |
3
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 10 |
8 9
|
hocofni |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) Fn ℋ |
| 11 |
|
fnfvelrn |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 12 |
10 11
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 13 |
|
ssel |
⊢ ( ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐺 ) ) |
| 14 |
12 13
|
syl5 |
⊢ ( ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 → ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐺 ) ) |
| 15 |
14
|
imp |
⊢ ( ( ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐺 ) |
| 16 |
5 15
|
elind |
⊢ ( ( ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 17 |
16
|
adantll |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( 𝐹 ∩ 𝐺 ) ) |
| 18 |
3 2 1
|
pj2cocli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 19 |
|
fveq1 |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 21 |
18 20
|
imbitrrid |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) → ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 23 |
22
|
adantlr |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 24 |
17 23
|
elind |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) |
| 25 |
8 9
|
hococli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) |
| 26 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 27 |
25 26
|
mpdan |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 28 |
27
|
adantl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 29 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → 𝑥 ∈ ℋ ) |
| 30 |
25
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) |
| 31 |
1 2
|
chincli |
⊢ ( 𝐹 ∩ 𝐺 ) ∈ Cℋ |
| 32 |
31 3
|
chincli |
⊢ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ∈ Cℋ |
| 33 |
32
|
cheli |
⊢ ( 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → 𝑦 ∈ ℋ ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
| 35 |
29 30 34
|
3jca |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 37 |
|
his2sub |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 39 |
19
|
adantr |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 41 |
3 2 1
|
pjadj2coi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
| 42 |
33 41
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
| 43 |
1 2 3
|
pj3lem1 |
⊢ ( 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) = 𝑦 ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 46 |
42 45
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 47 |
40 46
|
sylan9eq |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) − ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 49 |
25 33
|
anim12i |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 51 |
|
hicl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 53 |
52
|
subidd |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) − ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) = 0 ) |
| 54 |
38 48 53
|
3eqtr2d |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) |
| 55 |
54
|
expr |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) → ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) |
| 56 |
55
|
ralrimiv |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ∀ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) |
| 57 |
32
|
chshii |
⊢ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ∈ Sℋ |
| 58 |
|
shocel |
⊢ ( ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ∈ Sℋ → ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ↔ ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) ) |
| 59 |
57 58
|
ax-mp |
⊢ ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ↔ ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑦 ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) |
| 60 |
28 56 59
|
sylanbrc |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |
| 61 |
32
|
pjvi |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ∧ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) → ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 62 |
24 60 61
|
syl2anc |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 63 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
| 64 |
|
hvaddsub12 |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) |
| 65 |
25 63 25 64
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) |
| 66 |
|
hvsubid |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) = 0ℎ ) |
| 67 |
25 66
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) = 0ℎ ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ 0ℎ ) ) |
| 69 |
|
ax-hvaddid |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ 0ℎ ) = 𝑥 ) |
| 70 |
68 69
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = 𝑥 ) |
| 71 |
65 70
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = 𝑥 ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 74 |
62 73
|
eqtr3d |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 75 |
74
|
ralrimiva |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) → ∀ 𝑥 ∈ ℋ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 76 |
8 9
|
hocofi |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
| 77 |
32
|
pjfi |
⊢ ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) : ℋ ⟶ ℋ |
| 78 |
76 77
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ↔ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |
| 79 |
75 78
|
sylib |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |