Metamath Proof Explorer
Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
shocel |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) |
| 2 |
|
ocel |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |