Metamath Proof Explorer


Theorem ocsh

Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ocsh ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ S )

Proof

Step Hyp Ref Expression
1 ocval ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } )
2 ssrab2 { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ ℋ
3 1 2 eqsstrdi ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ )
4 ssel ( 𝐴 ⊆ ℋ → ( 𝑦𝐴𝑦 ∈ ℋ ) )
5 hi01 ( 𝑦 ∈ ℋ → ( 0 ·ih 𝑦 ) = 0 )
6 4 5 syl6 ( 𝐴 ⊆ ℋ → ( 𝑦𝐴 → ( 0 ·ih 𝑦 ) = 0 ) )
7 6 ralrimiv ( 𝐴 ⊆ ℋ → ∀ 𝑦𝐴 ( 0 ·ih 𝑦 ) = 0 )
8 ax-hv0cl 0 ∈ ℋ
9 7 8 jctil ( 𝐴 ⊆ ℋ → ( 0 ∈ ℋ ∧ ∀ 𝑦𝐴 ( 0 ·ih 𝑦 ) = 0 ) )
10 ocel ( 𝐴 ⊆ ℋ → ( 0 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 0 ∈ ℋ ∧ ∀ 𝑦𝐴 ( 0 ·ih 𝑦 ) = 0 ) ) )
11 9 10 mpbird ( 𝐴 ⊆ ℋ → 0 ∈ ( ⊥ ‘ 𝐴 ) )
12 3 11 jca ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0 ∈ ( ⊥ ‘ 𝐴 ) ) )
13 ssel2 ( ( 𝐴 ⊆ ℋ ∧ 𝑧𝐴 ) → 𝑧 ∈ ℋ )
14 ax-his2 ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) )
15 14 3expa ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) )
16 oveq12 ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = ( 0 + 0 ) )
17 00id ( 0 + 0 ) = 0
18 16 17 eqtrdi ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ·ih 𝑧 ) + ( 𝑦 ·ih 𝑧 ) ) = 0 )
19 15 18 sylan9eq ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 )
20 19 ex ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
21 20 ancoms ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
22 13 21 sylan ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧𝐴 ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
23 22 an32s ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧𝐴 ) → ( ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
24 23 ralimdva ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) → ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
25 24 imdistanda ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
26 hvaddcl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + 𝑦 ) ∈ ℋ )
27 26 anim1i ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) )
28 25 27 syl6 ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) → ( ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
29 ocel ( 𝐴 ⊆ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ) )
30 ocel ( 𝐴 ⊆ ℋ → ( 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
31 29 30 anbi12d ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) )
32 an4 ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
33 r19.26 ( ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) )
34 33 anbi2i ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
35 32 34 bitr4i ( ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑥 ·ih 𝑧 ) = 0 ) ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
36 31 35 bitrdi ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 ·ih 𝑧 ) = 0 ∧ ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) )
37 ocel ( 𝐴 ⊆ ℋ → ( ( 𝑥 + 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 + 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
38 28 36 37 3imtr4d ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 + 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) )
39 38 ralrimivv ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 + 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) )
40 mul01 ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 )
41 oveq2 ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = ( 𝑥 · 0 ) )
42 41 eqeq1d ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ↔ ( 𝑥 · 0 ) = 0 ) )
43 40 42 syl5ibrcom ( 𝑥 ∈ ℂ → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) )
44 43 ad2antrl ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) )
45 ax-his3 ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) )
46 45 eqeq1d ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) )
47 46 3expa ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) )
48 47 ancoms ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ↔ ( 𝑥 · ( 𝑦 ·ih 𝑧 ) ) = 0 ) )
49 44 48 sylibrd ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) )
50 13 49 sylan ( ( ( 𝐴 ⊆ ℋ ∧ 𝑧𝐴 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) )
51 50 an32s ( ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧𝐴 ) → ( ( 𝑦 ·ih 𝑧 ) = 0 → ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) )
52 51 ralimdva ( ( 𝐴 ⊆ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 → ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) )
53 52 imdistanda ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
54 hvmulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · 𝑦 ) ∈ ℋ )
55 54 anim1i ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) → ( ( 𝑥 · 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) )
56 53 55 syl6 ( 𝐴 ⊆ ℋ → ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) → ( ( 𝑥 · 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
57 30 anbi2d ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) ) )
58 anass ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℋ ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
59 57 58 bitr4di ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ∀ 𝑧𝐴 ( 𝑦 ·ih 𝑧 ) = 0 ) ) )
60 ocel ( 𝐴 ⊆ ℋ → ( ( 𝑥 · 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℋ ∧ ∀ 𝑧𝐴 ( ( 𝑥 · 𝑦 ) ·ih 𝑧 ) = 0 ) ) )
61 56 59 60 3imtr4d ( 𝐴 ⊆ ℋ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 · 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) )
62 61 ralrimivv ( 𝐴 ⊆ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 · 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) )
63 39 62 jca ( 𝐴 ⊆ ℋ → ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 + 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 · 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) )
64 issh2 ( ( ⊥ ‘ 𝐴 ) ∈ S ↔ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ 0 ∈ ( ⊥ ‘ 𝐴 ) ) ∧ ( ∀ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 + 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( ⊥ ‘ 𝐴 ) ( 𝑥 · 𝑦 ) ∈ ( ⊥ ‘ 𝐴 ) ) ) )
65 12 63 64 sylanbrc ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ S )