Metamath Proof Explorer


Theorem ocval

Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion ocval ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } )

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 1 elpw2 ( 𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ )
3 raleq ( 𝑧 = 𝐻 → ( ∀ 𝑦𝑧 ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 ) )
4 3 rabbidv ( 𝑧 = 𝐻 → { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } )
5 df-oc ⊥ = ( 𝑧 ∈ 𝒫 ℋ ↦ { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } )
6 1 rabex { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ∈ V
7 4 5 6 fvmpt ( 𝐻 ∈ 𝒫 ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } )
8 2 7 sylbir ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } )