Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
5 |
|
eqeq1 |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ↔ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ) |
6 |
4 5
|
mpbiri |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) |
7 |
6
|
rneqd |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ran ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) |
8 |
|
rncoss |
⊢ ran ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ⊆ ran ( projℎ ‘ 𝐺 ) |
9 |
2
|
pjrni |
⊢ ran ( projℎ ‘ 𝐺 ) = 𝐺 |
10 |
8 9
|
sseqtri |
⊢ ran ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ⊆ 𝐺 |
11 |
7 10
|
eqsstrdi |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) |
12 |
1 2 3
|
pj3si |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ran ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ⊆ 𝐺 ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |