Metamath Proof Explorer


Theorem pj3i

Description: Projection triplet theorem. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjadj2co.1 𝐹C
pjadj2co.2 𝐺C
pjadj2co.3 𝐻C
Assertion pj3i ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ∧ ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) ) → ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( ( 𝐹𝐺 ) ∩ 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 pjadj2co.1 𝐹C
2 pjadj2co.2 𝐺C
3 pjadj2co.3 𝐻C
4 coass ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) = ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) )
5 eqeq1 ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) → ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) ↔ ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) = ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) ) )
6 4 5 mpbiri ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) → ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) )
7 6 rneqd ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) → ran ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ran ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) )
8 rncoss ran ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) ⊆ ran ( proj𝐺 )
9 2 pjrni ran ( proj𝐺 ) = 𝐺
10 8 9 sseqtri ran ( ( proj𝐺 ) ∘ ( ( proj𝐹 ) ∘ ( proj𝐻 ) ) ) ⊆ 𝐺
11 7 10 eqsstrdi ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) → ran ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ⊆ 𝐺 )
12 1 2 3 pj3si ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ∧ ran ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) ⊆ 𝐺 ) → ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( ( 𝐹𝐺 ) ∩ 𝐻 ) ) )
13 11 12 sylan2 ( ( ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐹 ) ) ∧ ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐹 ) ) ∘ ( proj𝐻 ) ) ) → ( ( ( proj𝐹 ) ∘ ( proj𝐺 ) ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( ( 𝐹𝐺 ) ∩ 𝐻 ) ) )