Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjadj2co.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjadj2co.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
|
fveq1 |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) = ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) |
5 |
4
|
oveq2d |
⊢ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
8 |
1 2
|
chincli |
⊢ ( 𝐹 ∩ 𝐺 ) ∈ Cℋ |
9 |
8 3
|
chincli |
⊢ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ∈ Cℋ |
10 |
9
|
pjadji |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑦 ) ) ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑦 ) ) ) |
12 |
1 2 3
|
pj3i |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ) |
13 |
12
|
fveq1d |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
16 |
12
|
fveq1d |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) = ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑦 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑦 ) ) ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( projℎ ‘ ( ( 𝐹 ∩ 𝐺 ) ∩ 𝐻 ) ) ‘ 𝑦 ) ) ) |
19 |
11 15 18
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
20 |
3 1 2
|
pjadj2coi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
22 |
7 19 21
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) ∧ 𝑦 ∈ ℋ ) → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
23 |
22
|
exp31 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( 𝑦 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
24 |
23
|
ralrimdv |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ∀ 𝑦 ∈ ℋ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
25 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐹 ) : ℋ ⟶ ℋ |
26 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
27 |
25 26
|
hocofi |
⊢ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
28 |
3
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
29 |
27 28
|
hococli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) |
30 |
28 25
|
hocofi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) : ℋ ⟶ ℋ |
31 |
30 26
|
hococli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ ℋ ) |
32 |
|
hial2eq |
⊢ ( ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
33 |
29 31 32
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
34 |
24 33
|
sylibd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
35 |
34
|
com12 |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ∀ 𝑥 ∈ ℋ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) |
37 |
27 28
|
hocofi |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
38 |
30 26
|
hocofi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
39 |
37 38
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ↔ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
40 |
36 39
|
sylib |
⊢ ( ( ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐹 ) ) ∧ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐹 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |