Metamath Proof Explorer


Theorem pjs14i

Description: Theorem S-14 of Watanabe, p. 486. (Contributed by NM, 26-Sep-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjs14.1 𝐺C
pjs14.2 𝐻C
Assertion pjs14i ( 𝐴 ∈ ℋ → ( norm ‘ ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐴 ) ) ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pjs14.1 𝐺C
2 pjs14.2 𝐻C
3 2 1 pjcoi ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐴 ) = ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) )
4 3 fveq2d ( 𝐴 ∈ ℋ → ( norm ‘ ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ) )
5 1 pjhcli ( 𝐴 ∈ ℋ → ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ℋ )
6 pjnorm ( ( 𝐻C ∧ ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ) ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) )
7 2 5 6 sylancr ( 𝐴 ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) ) ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) )
8 4 7 eqbrtrd ( 𝐴 ∈ ℋ → ( norm ‘ ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ‘ 𝐴 ) ) ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝐴 ) ) )