Step |
Hyp |
Ref |
Expression |
1 |
|
pjs14.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjs14.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2 1
|
pjcoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
5 |
1
|
pjhcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ ) |
6 |
|
pjnorm |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
7 |
2 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
8 |
4 7
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |