Metamath Proof Explorer


Theorem pjnorm

Description: The norm of the projection is less than or equal to the norm. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjnorm ( ( 𝐻C𝐴 ∈ ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) )
2 1 fveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) )
3 2 fveq2d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) )
4 3 breq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) ) )
5 2fveq3 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
6 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( norm𝐴 ) = ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
7 5 6 breq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ≤ ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
8 ifchhv if ( 𝐻C , 𝐻 , ℋ ) ∈ C
9 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
10 8 9 pjnormi ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ≤ ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
11 4 7 10 dedth2h ( ( 𝐻C𝐴 ∈ ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) )