Metamath Proof Explorer


Theorem pjnorm

Description: The norm of the projection is less than or equal to the norm. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjnorm HCAnormprojHAnormA

Proof

Step Hyp Ref Expression
1 fveq2 H=ifHCHprojH=projifHCH
2 1 fveq1d H=ifHCHprojHA=projifHCHA
3 2 fveq2d H=ifHCHnormprojHA=normprojifHCHA
4 3 breq1d H=ifHCHnormprojHAnormAnormprojifHCHAnormA
5 2fveq3 A=ifAA0normprojifHCHA=normprojifHCHifAA0
6 fveq2 A=ifAA0normA=normifAA0
7 5 6 breq12d A=ifAA0normprojifHCHAnormAnormprojifHCHifAA0normifAA0
8 ifchhv ifHCHC
9 ifhvhv0 ifAA0
10 8 9 pjnormi normprojifHCHifAA0normifAA0
11 4 7 10 dedth2h HCAnormprojHAnormA