| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjnorm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjnorm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 5 |
4 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 6 |
3 5
|
pm3.2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
| 7 |
2 2
|
pjorthi |
⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) |
| 8 |
1 7
|
ax-mp |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 |
| 9 |
|
normpyc |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) ) |
| 10 |
6 8 9
|
mp2 |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 11 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 12 |
11
|
fveq2i |
⊢ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 13 |
10 12
|
breqtrri |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) |