Step |
Hyp |
Ref |
Expression |
1 |
|
pjs14.1 |
|- G e. CH |
2 |
|
pjs14.2 |
|- H e. CH |
3 |
2 1
|
pjcoi |
|- ( A e. ~H -> ( ( ( projh ` H ) o. ( projh ` G ) ) ` A ) = ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) ) |
4 |
3
|
fveq2d |
|- ( A e. ~H -> ( normh ` ( ( ( projh ` H ) o. ( projh ` G ) ) ` A ) ) = ( normh ` ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) ) ) |
5 |
1
|
pjhcli |
|- ( A e. ~H -> ( ( projh ` G ) ` A ) e. ~H ) |
6 |
|
pjnorm |
|- ( ( H e. CH /\ ( ( projh ` G ) ` A ) e. ~H ) -> ( normh ` ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |
7 |
2 5 6
|
sylancr |
|- ( A e. ~H -> ( normh ` ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |
8 |
4 7
|
eqbrtrd |
|- ( A e. ~H -> ( normh ` ( ( ( projh ` H ) o. ( projh ` G ) ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |