Step |
Hyp |
Ref |
Expression |
1 |
|
pjadj2co.1 |
|
2 |
|
pjadj2co.2 |
|
3 |
|
pjadj2co.3 |
|
4 |
1 2 3
|
pj2cocli |
|
5 |
4
|
adantl |
|
6 |
1
|
pjfi |
|
7 |
2
|
pjfi |
|
8 |
6 7
|
hocofi |
|
9 |
3
|
pjfi |
|
10 |
8 9
|
hocofni |
|
11 |
|
fnfvelrn |
|
12 |
10 11
|
mpan |
|
13 |
|
ssel |
|
14 |
12 13
|
syl5 |
|
15 |
14
|
imp |
|
16 |
5 15
|
elind |
|
17 |
16
|
adantll |
|
18 |
3 2 1
|
pj2cocli |
|
19 |
|
fveq1 |
|
20 |
19
|
eleq1d |
|
21 |
18 20
|
syl5ibr |
|
22 |
21
|
imp |
|
23 |
22
|
adantlr |
|
24 |
17 23
|
elind |
|
25 |
8 9
|
hococli |
|
26 |
|
hvsubcl |
|
27 |
25 26
|
mpdan |
|
28 |
27
|
adantl |
|
29 |
|
simpl |
|
30 |
25
|
adantr |
|
31 |
1 2
|
chincli |
|
32 |
31 3
|
chincli |
|
33 |
32
|
cheli |
|
34 |
33
|
adantl |
|
35 |
29 30 34
|
3jca |
|
36 |
35
|
adantl |
|
37 |
|
his2sub |
|
38 |
36 37
|
syl |
|
39 |
19
|
adantr |
|
40 |
39
|
oveq1d |
|
41 |
3 2 1
|
pjadj2coi |
|
42 |
33 41
|
sylan2 |
|
43 |
1 2 3
|
pj3lem1 |
|
44 |
43
|
oveq2d |
|
45 |
44
|
adantl |
|
46 |
42 45
|
eqtrd |
|
47 |
40 46
|
sylan9eq |
|
48 |
47
|
oveq1d |
|
49 |
25 33
|
anim12i |
|
50 |
49
|
adantl |
|
51 |
|
hicl |
|
52 |
50 51
|
syl |
|
53 |
52
|
subidd |
|
54 |
38 48 53
|
3eqtr2d |
|
55 |
54
|
expr |
|
56 |
55
|
ralrimiv |
|
57 |
32
|
chshii |
|
58 |
|
shocel |
|
59 |
57 58
|
ax-mp |
|
60 |
28 56 59
|
sylanbrc |
|
61 |
32
|
pjvi |
|
62 |
24 60 61
|
syl2anc |
|
63 |
|
id |
|
64 |
|
hvaddsub12 |
|
65 |
25 63 25 64
|
syl3anc |
|
66 |
|
hvsubid |
|
67 |
25 66
|
syl |
|
68 |
67
|
oveq2d |
|
69 |
|
ax-hvaddid |
|
70 |
68 69
|
eqtrd |
|
71 |
65 70
|
eqtrd |
|
72 |
71
|
fveq2d |
|
73 |
72
|
adantl |
|
74 |
62 73
|
eqtr3d |
|
75 |
74
|
ralrimiva |
|
76 |
8 9
|
hocofi |
|
77 |
32
|
pjfi |
|
78 |
76 77
|
hoeqi |
|
79 |
75 78
|
sylib |
|