Metamath Proof Explorer


Theorem hvaddsub12

Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvaddsub12 ABCA+B-C=B+A-C

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1C-1C
3 1 2 mpan C-1C
4 hvadd12 AB-1CA+B+-1C=B+A+-1C
5 3 4 syl3an3 ABCA+B+-1C=B+A+-1C
6 hvsubval BCB-C=B+-1C
7 6 oveq2d BCA+B-C=A+B+-1C
8 7 3adant1 ABCA+B-C=A+B+-1C
9 hvsubval ACA-C=A+-1C
10 9 oveq2d ACB+A-C=B+A+-1C
11 10 3adant2 ABCB+A-C=B+A+-1C
12 5 8 11 3eqtr4d ABCA+B-C=B+A-C