Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ↔ ( 𝐴 ∈ 𝐺 ∧ 𝐴 ∈ 𝐻 ) ) |
4 |
2
|
cheli |
⊢ ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐺 ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
6 |
1 2
|
pjcoi |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ 𝐺 ∧ 𝐴 ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
8 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
9 |
2 8
|
mpan |
⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
10 |
|
eleq1 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ↔ 𝐴 ∈ 𝐺 ) ) |
11 |
|
pjid |
⊢ ( ( 𝐺 ∈ Cℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
12 |
1 11
|
mpan |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
13 |
10 12
|
syl6bir |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ 𝐺 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
14 |
|
eqeq2 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → ( ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
15 |
13 14
|
sylibd |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ 𝐺 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
16 |
9 15
|
syl |
⊢ ( 𝐴 ∈ 𝐻 → ( 𝐴 ∈ 𝐺 → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝐴 ∈ 𝐺 ∧ 𝐴 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) |
18 |
7 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝐺 ∧ 𝐴 ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |
19 |
3 18
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |