| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
1 2
|
pjcocli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐺 ) |
| 4 |
3
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐺 ) |
| 5 |
2 1
|
pjcocli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 6 |
|
fveq1 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 8 |
5 7
|
imbitrrid |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 9 |
8
|
imp |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 10 |
4 9
|
elind |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( 𝐺 ∩ 𝐻 ) ) |
| 11 |
1 2
|
pjcohcli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) |
| 12 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 13 |
11 12
|
mpdan |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 14 |
13
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ) |
| 15 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → 𝑥 ∈ ℋ ) |
| 16 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) |
| 17 |
1 2
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
| 18 |
17
|
cheli |
⊢ ( 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) → 𝑦 ∈ ℋ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
| 20 |
15 16 19
|
3jca |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( 𝑥 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( 𝑥 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 22 |
|
his2sub |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 24 |
6
|
oveq1d |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 25 |
2 1
|
pjadjcoi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
| 26 |
18 25
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) ) |
| 27 |
1 2
|
pjclem4a |
⊢ ( 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) = 𝑦 ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) → ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( 𝑥 ·ih ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 30 |
26 29
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 31 |
24 30
|
sylan9eq |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) − ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ( 𝑥 ·ih 𝑦 ) − ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 33 |
11 18
|
anim12i |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
| 35 |
|
hicl |
⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 37 |
36
|
subidd |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) − ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ·ih 𝑦 ) ) = 0 ) |
| 38 |
23 32 37
|
3eqtr2d |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) |
| 39 |
38
|
expr |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) |
| 40 |
39
|
ralrimiv |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ∀ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) |
| 41 |
17
|
chshii |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Sℋ |
| 42 |
|
shocel |
⊢ ( ( 𝐺 ∩ 𝐻 ) ∈ Sℋ → ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ↔ ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) ) |
| 43 |
41 42
|
ax-mp |
⊢ ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ↔ ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ℋ ∧ ∀ 𝑦 ∈ ( 𝐺 ∩ 𝐻 ) ( ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ·ih 𝑦 ) = 0 ) ) |
| 44 |
14 40 43
|
sylanbrc |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 45 |
17
|
pjvi |
⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ( 𝐺 ∩ 𝐻 ) ∧ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) → ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 46 |
10 44 45
|
syl2anc |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 47 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
| 48 |
|
hvaddsub12 |
⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) |
| 49 |
11 47 11 48
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) |
| 50 |
|
hvsubid |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ∈ ℋ → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) = 0ℎ ) |
| 51 |
11 50
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) = 0ℎ ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 +ℎ 0ℎ ) ) |
| 53 |
|
ax-hvaddid |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ 0ℎ ) = 𝑥 ) |
| 54 |
49 52 53
|
3eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) = 𝑥 ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) +ℎ ( 𝑥 −ℎ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 57 |
46 56
|
eqtr3d |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ 𝑥 ) ) |
| 59 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 60 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 61 |
59 60
|
hocofi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
| 62 |
17
|
pjfi |
⊢ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) : ℋ ⟶ ℋ |
| 63 |
61 62
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 64 |
58 63
|
sylib |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |