Metamath Proof Explorer


Theorem pjci

Description: Two subspaces commute iff their projections commute. Lemma 4 of Kalmbach p. 67. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion pjci ( 𝐺 𝐶 𝐻 ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 pjclem1.1 𝐺C
2 pjclem1.2 𝐻C
3 1 2 pjclem2 ( 𝐺 𝐶 𝐻 → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
4 1 2 pjclem4 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )
5 1 2 pjclem3 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( proj𝐺 ) ) )
6 2 choccli ( ⊥ ‘ 𝐻 ) ∈ C
7 1 6 pjclem4 ( ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
8 5 7 syl ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
9 4 8 oveq12d ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) +op ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( proj ‘ ( 𝐺𝐻 ) ) +op ( proj ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) )
10 df-iop Iop = ( proj ‘ ℋ )
11 10 coeq2i ( ( proj𝐺 ) ∘ Iop ) = ( ( proj𝐺 ) ∘ ( proj ‘ ℋ ) )
12 1 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
13 12 hoid1i ( ( proj𝐺 ) ∘ Iop ) = ( proj𝐺 )
14 11 13 eqtr3i ( ( proj𝐺 ) ∘ ( proj ‘ ℋ ) ) = ( proj𝐺 )
15 2 pjtoi ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ )
16 15 coeq2i ( ( proj𝐺 ) ∘ ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( proj𝐺 ) ∘ ( proj ‘ ℋ ) )
17 2 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
18 6 pjfi ( proj ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ
19 1 17 18 pjsdii ( ( proj𝐺 ) ∘ ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) +op ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) )
20 16 19 eqtr3i ( ( proj𝐺 ) ∘ ( proj ‘ ℋ ) ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) +op ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) )
21 14 20 eqtr3i ( proj𝐺 ) = ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) +op ( ( proj𝐺 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) )
22 inss2 ( 𝐺𝐻 ) ⊆ 𝐻
23 1 choccli ( ⊥ ‘ 𝐺 ) ∈ C
24 2 23 chub2i 𝐻 ⊆ ( ( ⊥ ‘ 𝐺 ) ∨ 𝐻 )
25 22 24 sstri ( 𝐺𝐻 ) ⊆ ( ( ⊥ ‘ 𝐺 ) ∨ 𝐻 )
26 1 2 chdmm3i ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ 𝐺 ) ∨ 𝐻 )
27 25 26 sseqtrri ( 𝐺𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) )
28 1 2 chincli ( 𝐺𝐻 ) ∈ C
29 1 6 chincli ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ∈ C
30 28 29 pjscji ( ( 𝐺𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( proj ‘ ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( proj ‘ ( 𝐺𝐻 ) ) +op ( proj ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) )
31 27 30 ax-mp ( proj ‘ ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( proj ‘ ( 𝐺𝐻 ) ) +op ( proj ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
32 9 21 31 3eqtr4g ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( proj𝐺 ) = ( proj ‘ ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) )
33 28 29 chjcli ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ∈ C
34 1 33 pj11i ( ( proj𝐺 ) = ( proj ‘ ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ↔ 𝐺 = ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
35 32 34 sylib ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → 𝐺 = ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
36 1 2 cmbri ( 𝐺 𝐶 𝐻𝐺 = ( ( 𝐺𝐻 ) ∨ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) )
37 35 36 sylibr ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → 𝐺 𝐶 𝐻 )
38 3 37 impbii ( 𝐺 𝐶 𝐻 ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )