Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1 2
|
pjclem2 |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
4 |
1 2
|
pjclem4 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
5 |
1 2
|
pjclem3 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
6 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
7 |
1 6
|
pjclem4 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
8 |
5 7
|
syl |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
9 |
4 8
|
oveq12d |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
10 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
11 |
10
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) |
12 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
13 |
12
|
hoid1i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( projℎ ‘ 𝐺 ) |
14 |
11 13
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( projℎ ‘ 𝐺 ) |
15 |
2
|
pjtoi |
⊢ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ℋ ) |
16 |
15
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) |
17 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
18 |
6
|
pjfi |
⊢ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
19 |
1 17 18
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
20 |
16 19
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
21 |
14 20
|
eqtr3i |
⊢ ( projℎ ‘ 𝐺 ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
22 |
|
inss2 |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐻 |
23 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
24 |
2 23
|
chub2i |
⊢ 𝐻 ⊆ ( ( ⊥ ‘ 𝐺 ) ∨ℋ 𝐻 ) |
25 |
22 24
|
sstri |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ ( ( ⊥ ‘ 𝐺 ) ∨ℋ 𝐻 ) |
26 |
1 2
|
chdmm3i |
⊢ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ 𝐺 ) ∨ℋ 𝐻 ) |
27 |
25 26
|
sseqtrri |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
28 |
1 2
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
29 |
1 6
|
chincli |
⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
30 |
28 29
|
pjscji |
⊢ ( ( 𝐺 ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
31 |
27 30
|
ax-mp |
⊢ ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
32 |
9 21 31
|
3eqtr4g |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
33 |
28 29
|
chjcli |
⊢ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ∈ Cℋ |
34 |
1 33
|
pj11i |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ↔ 𝐺 = ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
35 |
32 34
|
sylib |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → 𝐺 = ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
36 |
1 2
|
cmbri |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ 𝐺 = ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
37 |
35 36
|
sylibr |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → 𝐺 𝐶ℋ 𝐻 ) |
38 |
3 37
|
impbii |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |