| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidmco.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
axpjpj |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → 𝑥 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) |
| 4 |
|
pjch1 |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
| 5 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 6 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 7 |
6
|
pjfi |
⊢ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
| 8 |
|
hosval |
⊢ ( ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ ∧ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) |
| 9 |
5 7 8
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) ) |
| 10 |
3 4 9
|
3eqtr4rd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) |
| 12 |
5 7
|
hoaddcli |
⊢ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) : ℋ ⟶ ℋ |
| 13 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 14 |
13
|
pjfi |
⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
| 15 |
12 14
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ℋ ) ) |
| 16 |
11 15
|
mpbi |
⊢ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ℋ ) |