Metamath Proof Explorer


Theorem pjtoi

Description: Subspace sum of projection and projection of orthocomplement. (Contributed by NM, 16-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 𝐻C
Assertion pjtoi ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ )

Proof

Step Hyp Ref Expression
1 pjidmco.1 𝐻C
2 axpjpj ( ( 𝐻C𝑥 ∈ ℋ ) → 𝑥 = ( ( ( proj𝐻 ) ‘ 𝑥 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) )
3 1 2 mpan ( 𝑥 ∈ ℋ → 𝑥 = ( ( ( proj𝐻 ) ‘ 𝑥 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) )
4 pjch1 ( 𝑥 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝑥 ) = 𝑥 )
5 1 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
6 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
7 6 pjfi ( proj ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ
8 hosval ( ( ( proj𝐻 ) : ℋ ⟶ ℋ ∧ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) )
9 5 7 8 mp3an12 ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝑥 ) ) )
10 3 4 9 3eqtr4rd ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( proj ‘ ℋ ) ‘ 𝑥 ) )
11 10 rgen 𝑥 ∈ ℋ ( ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( proj ‘ ℋ ) ‘ 𝑥 )
12 5 7 hoaddcli ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) : ℋ ⟶ ℋ
13 helch ℋ ∈ C
14 13 pjfi ( proj ‘ ℋ ) : ℋ ⟶ ℋ
15 12 14 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝑥 ) = ( ( proj ‘ ℋ ) ‘ 𝑥 ) ↔ ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ ) )
16 11 15 mpbi ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ )