Metamath Proof Explorer


Theorem helch

Description: The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 6-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion helch ℋ ∈ C

Proof

Step Hyp Ref Expression
1 ssid ℋ ⊆ ℋ
2 ax-hv0cl 0 ∈ ℋ
3 1 2 pm3.2i ( ℋ ⊆ ℋ ∧ 0 ∈ ℋ )
4 hvaddcl ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + 𝑦 ) ∈ ℋ )
5 4 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 + 𝑦 ) ∈ ℋ
6 hvmulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · 𝑦 ) ∈ ℋ )
7 6 rgen2 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 · 𝑦 ) ∈ ℋ
8 5 7 pm3.2i ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 · 𝑦 ) ∈ ℋ )
9 issh2 ( ℋ ∈ S ↔ ( ( ℋ ⊆ ℋ ∧ 0 ∈ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 + 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 · 𝑦 ) ∈ ℋ ) ) )
10 3 8 9 mpbir2an ℋ ∈ S
11 vex 𝑥 ∈ V
12 11 hlimveci ( 𝑓𝑣 𝑥𝑥 ∈ ℋ )
13 12 adantl ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ℋ )
14 13 gen2 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ℋ )
15 isch2 ( ℋ ∈ C ↔ ( ℋ ∈ S ∧ ∀ 𝑓𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓𝑣 𝑥 ) → 𝑥 ∈ ℋ ) ) )
16 10 14 15 mpbir2an ℋ ∈ C