Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ℋ ⊆ ℋ |
2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
3 |
1 2
|
pm3.2i |
⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ ) |
4 |
|
hvaddcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
5 |
4
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ |
6 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ |
8 |
5 7
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
9 |
|
issh2 |
⊢ ( ℋ ∈ Sℋ ↔ ( ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) ) ) |
10 |
3 8 9
|
mpbir2an |
⊢ ℋ ∈ Sℋ |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
11
|
hlimveci |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
14 |
13
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
15 |
|
isch2 |
⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) ) ) |
16 |
10 14 15
|
mpbir2an |
⊢ ℋ ∈ Cℋ |