Metamath Proof Explorer


Theorem pjoci

Description: Projection of orthocomplement. First part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 𝐻C
Assertion pjoci ( ( proj ‘ ℋ ) −op ( proj𝐻 ) ) = ( proj ‘ ( ⊥ ‘ 𝐻 ) )

Proof

Step Hyp Ref Expression
1 pjidmco.1 𝐻C
2 1 pjtoi ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ )
3 helch ℋ ∈ C
4 3 pjfi ( proj ‘ ℋ ) : ℋ ⟶ ℋ
5 1 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
6 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
7 6 pjfi ( proj ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ
8 4 5 7 hodsi ( ( ( proj ‘ ℋ ) −op ( proj𝐻 ) ) = ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( proj𝐻 ) +op ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj ‘ ℋ ) )
9 2 8 mpbir ( ( proj ‘ ℋ ) −op ( proj𝐻 ) ) = ( proj ‘ ( ⊥ ‘ 𝐻 ) )