Description: Projection of orthocomplement. First part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pjidmco.1 | ⊢ 𝐻 ∈ Cℋ | |
Assertion | pjoci | ⊢ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjidmco.1 | ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | pjtoi | ⊢ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ℋ ) |
3 | helch | ⊢ ℋ ∈ Cℋ | |
4 | 3 | pjfi | ⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
5 | 1 | pjfi | ⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
6 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
7 | 6 | pjfi | ⊢ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
8 | 4 5 7 | hodsi | ⊢ ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( projℎ ‘ 𝐻 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ ℋ ) ) |
9 | 2 8 | mpbir | ⊢ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) |