Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) |
2 |
1 1
|
coeq12d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ∘ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) |
3 |
2 1
|
eqeq12d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) ↔ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ∘ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) |
4 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
5 |
4
|
elimel |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
6 |
5
|
pjidmcoi |
⊢ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ∘ ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) |
7 |
3 6
|
dedth |
⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) ) |