Metamath Proof Explorer


Theorem pjidmco

Description: A projection operator is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjidmco ( 𝐻C → ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) )
2 1 1 coeq12d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ∘ ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ) )
3 2 1 eqeq12d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 ) ↔ ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ∘ ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ) = ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ) )
4 h0elch 0C
5 4 elimel if ( 𝐻C , 𝐻 , 0 ) ∈ C
6 5 pjidmcoi ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ∘ ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ) = ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) )
7 3 6 dedth ( 𝐻C → ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 ) )