Metamath Proof Explorer


Theorem pjidmcoi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 1-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 𝐻C
Assertion pjidmcoi ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 )

Proof

Step Hyp Ref Expression
1 pjidmco.1 𝐻C
2 ssid 𝐻𝐻
3 1 1 pjss2coi ( 𝐻𝐻 ↔ ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 ) )
4 2 3 mpbi ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 )