Metamath Proof Explorer
Description: A projection is idempotent. Property (ii) of Beran p. 109.
(Contributed by NM, 1-Oct-2000) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
pjidmco.1 |
⊢ 𝐻 ∈ Cℋ |
|
Assertion |
pjidmcoi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidmco.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
ssid |
⊢ 𝐻 ⊆ 𝐻 |
| 3 |
1 1
|
pjss2coi |
⊢ ( 𝐻 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) ) |
| 4 |
2 3
|
mpbi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) |