Description: Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pjidmco.1 | ⊢ 𝐻 ∈ Cℋ | |
Assertion | pjoccoi | ⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjidmco.1 | ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | chssii | ⊢ 𝐻 ⊆ ℋ |
3 | ococss | ⊢ ( 𝐻 ⊆ ℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | |
4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
5 | 1 4 | pjorthcoi | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop ) |
6 | 2 3 5 | mp2b | ⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop |