Metamath Proof Explorer


Theorem pjoccoi

Description: Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 𝐻C
Assertion pjoccoi ( ( proj𝐻 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop

Proof

Step Hyp Ref Expression
1 pjidmco.1 𝐻C
2 1 chssii 𝐻 ⊆ ℋ
3 ococss ( 𝐻 ⊆ ℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) )
4 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
5 1 4 pjorthcoi ( 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) → ( ( proj𝐻 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop )
6 2 3 5 mp2b ( ( proj𝐻 ) ∘ ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ) = 0hop