Metamath Proof Explorer


Theorem pjoccoi

Description: Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1 H C
Assertion pjoccoi proj H proj H = 0 hop

Proof

Step Hyp Ref Expression
1 pjidmco.1 H C
2 1 chssii H
3 ococss H H H
4 1 choccli H C
5 1 4 pjorthcoi H H proj H proj H = 0 hop
6 2 3 5 mp2b proj H proj H = 0 hop