Metamath Proof Explorer


Theorem pjoccoi

Description: Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjidmco.1
|- H e. CH
Assertion pjoccoi
|- ( ( projh ` H ) o. ( projh ` ( _|_ ` H ) ) ) = 0hop

Proof

Step Hyp Ref Expression
1 pjidmco.1
 |-  H e. CH
2 1 chssii
 |-  H C_ ~H
3 ococss
 |-  ( H C_ ~H -> H C_ ( _|_ ` ( _|_ ` H ) ) )
4 1 choccli
 |-  ( _|_ ` H ) e. CH
5 1 4 pjorthcoi
 |-  ( H C_ ( _|_ ` ( _|_ ` H ) ) -> ( ( projh ` H ) o. ( projh ` ( _|_ ` H ) ) ) = 0hop )
6 2 3 5 mp2b
 |-  ( ( projh ` H ) o. ( projh ` ( _|_ ` H ) ) ) = 0hop