Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
2
|
pjcli |
|- ( x e. ~H -> ( ( projh ` H ) ` x ) e. H ) |
4 |
1 2
|
chsscon2i |
|- ( G C_ ( _|_ ` H ) <-> H C_ ( _|_ ` G ) ) |
5 |
|
ssel |
|- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` H ) ` x ) e. H -> ( ( projh ` H ) ` x ) e. ( _|_ ` G ) ) ) |
6 |
4 5
|
sylbi |
|- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` H ) ` x ) e. H -> ( ( projh ` H ) ` x ) e. ( _|_ ` G ) ) ) |
7 |
3 6
|
syl5com |
|- ( x e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` H ) ` x ) e. ( _|_ ` G ) ) ) |
8 |
2
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` H ) ` x ) e. ~H ) |
9 |
|
pjoc2 |
|- ( ( G e. CH /\ ( ( projh ` H ) ` x ) e. ~H ) -> ( ( ( projh ` H ) ` x ) e. ( _|_ ` G ) <-> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = 0h ) ) |
10 |
1 8 9
|
sylancr |
|- ( x e. ~H -> ( ( ( projh ` H ) ` x ) e. ( _|_ ` G ) <-> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = 0h ) ) |
11 |
7 10
|
sylibd |
|- ( x e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = 0h ) ) |
12 |
11
|
impcom |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) = 0h ) |
13 |
1 2
|
pjcoi |
|- ( x e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) ) |
14 |
13
|
adantl |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( ( projh ` G ) ` ( ( projh ` H ) ` x ) ) ) |
15 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
16 |
15
|
adantl |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
17 |
12 14 16
|
3eqtr4d |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( 0hop ` x ) ) |
18 |
17
|
ralrimiva |
|- ( G C_ ( _|_ ` H ) -> A. x e. ~H ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( 0hop ` x ) ) |
19 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
20 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
21 |
19 20
|
hocofi |
|- ( ( projh ` G ) o. ( projh ` H ) ) : ~H --> ~H |
22 |
|
ho0f |
|- 0hop : ~H --> ~H |
23 |
21 22
|
hoeqi |
|- ( A. x e. ~H ( ( ( projh ` G ) o. ( projh ` H ) ) ` x ) = ( 0hop ` x ) <-> ( ( projh ` G ) o. ( projh ` H ) ) = 0hop ) |
24 |
18 23
|
sylib |
|- ( G C_ ( _|_ ` H ) -> ( ( projh ` G ) o. ( projh ` H ) ) = 0hop ) |