Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
|
pjcjt2 |
|- ( ( G e. CH /\ H e. CH /\ x e. ~H ) -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) ) |
4 |
1 2 3
|
mp3an12 |
|- ( x e. ~H -> ( G C_ ( _|_ ` H ) -> ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) ) |
5 |
4
|
impcom |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) |
6 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
7 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
8 |
|
hosval |
|- ( ( ( projh ` G ) : ~H --> ~H /\ ( projh ` H ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) |
9 |
6 7 8
|
mp3an12 |
|- ( x e. ~H -> ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) |
10 |
9
|
adantl |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) = ( ( ( projh ` G ) ` x ) +h ( ( projh ` H ) ` x ) ) ) |
11 |
5 10
|
eqtr4d |
|- ( ( G C_ ( _|_ ` H ) /\ x e. ~H ) -> ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) ) |
12 |
11
|
ralrimiva |
|- ( G C_ ( _|_ ` H ) -> A. x e. ~H ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) ) |
13 |
1 2
|
chjcli |
|- ( G vH H ) e. CH |
14 |
13
|
pjfi |
|- ( projh ` ( G vH H ) ) : ~H --> ~H |
15 |
6 7
|
hoaddcli |
|- ( ( projh ` G ) +op ( projh ` H ) ) : ~H --> ~H |
16 |
14 15
|
hoeqi |
|- ( A. x e. ~H ( ( projh ` ( G vH H ) ) ` x ) = ( ( ( projh ` G ) +op ( projh ` H ) ) ` x ) <-> ( projh ` ( G vH H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) ) |
17 |
12 16
|
sylib |
|- ( G C_ ( _|_ ` H ) -> ( projh ` ( G vH H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) ) |