Metamath Proof Explorer


Theorem pjscji

Description: The projection of orthogonal subspaces is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjscji GHprojGH=projG+opprojH

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 pjcjt2 GCHCxGHprojGHx=projGx+projHx
4 1 2 3 mp3an12 xGHprojGHx=projGx+projHx
5 4 impcom GHxprojGHx=projGx+projHx
6 1 pjfi projG:
7 2 pjfi projH:
8 hosval projG:projH:xprojG+opprojHx=projGx+projHx
9 6 7 8 mp3an12 xprojG+opprojHx=projGx+projHx
10 9 adantl GHxprojG+opprojHx=projGx+projHx
11 5 10 eqtr4d GHxprojGHx=projG+opprojHx
12 11 ralrimiva GHxprojGHx=projG+opprojHx
13 1 2 chjcli GHC
14 13 pjfi projGH:
15 6 7 hoaddcli projG+opprojH:
16 14 15 hoeqi xprojGHx=projG+opprojHxprojGH=projG+opprojH
17 12 16 sylib GHprojGH=projG+opprojH