Metamath Proof Explorer


Theorem pjscji

Description: The projection of orthogonal subspaces is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjscji ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 pjcjt2 ( ( 𝐺C𝐻C𝑥 ∈ ℋ ) → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) ) )
4 1 2 3 mp3an12 ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) ) )
5 4 impcom ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) )
6 1 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
7 2 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
8 hosval ( ( ( proj𝐺 ) : ℋ ⟶ ℋ ∧ ( proj𝐻 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) )
9 6 7 8 mp3an12 ( 𝑥 ∈ ℋ → ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) )
10 9 adantl ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) ‘ 𝑥 ) + ( ( proj𝐻 ) ‘ 𝑥 ) ) )
11 5 10 eqtr4d ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) )
12 11 ralrimiva ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ∀ 𝑥 ∈ ℋ ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) )
13 1 2 chjcli ( 𝐺 𝐻 ) ∈ C
14 13 pjfi ( proj ‘ ( 𝐺 𝐻 ) ) : ℋ ⟶ ℋ
15 6 7 hoaddcli ( ( proj𝐺 ) +op ( proj𝐻 ) ) : ℋ ⟶ ℋ
16 14 15 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝑥 ) = ( ( ( proj𝐺 ) +op ( proj𝐻 ) ) ‘ 𝑥 ) ↔ ( proj ‘ ( 𝐺 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )
17 12 16 sylib ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )