| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
|
pjcjt2 |
⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
| 4 |
1 2 3
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
| 5 |
4
|
impcom |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 6 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 7 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 8 |
|
hosval |
⊢ ( ( ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ ∧ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 9 |
6 7 8
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 11 |
5 10
|
eqtr4d |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 12 |
11
|
ralrimiva |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ) |
| 13 |
1 2
|
chjcli |
⊢ ( 𝐺 ∨ℋ 𝐻 ) ∈ Cℋ |
| 14 |
13
|
pjfi |
⊢ ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) : ℋ ⟶ ℋ |
| 15 |
6 7
|
hoaddcli |
⊢ ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
| 16 |
14 15
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) ↔ ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ) |
| 17 |
12 16
|
sylib |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ) |