Metamath Proof Explorer


Theorem pjssumi

Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjssumi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 + 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 1 2 osumi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐺 + 𝐻 ) = ( 𝐺 𝐻 ) )
4 3 fveq2d ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 + 𝐻 ) ) = ( proj ‘ ( 𝐺 𝐻 ) ) )
5 1 2 pjscji ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )
6 4 5 eqtrd ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 + 𝐻 ) ) = ( ( proj𝐺 ) +op ( proj𝐻 ) ) )