Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjco.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjco.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjssumi | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjco.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjco.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1 2 | osumi | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐺 +ℋ 𝐻 ) = ( 𝐺 ∨ℋ 𝐻 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 5 | 1 2 | pjscji | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ) |
| 6 | 4 5 | eqtrd | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ 𝐻 ) ) ) |