Metamath Proof Explorer


Theorem pjssumi

Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1
|- G e. CH
pjco.2
|- H e. CH
Assertion pjssumi
|- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1
 |-  G e. CH
2 pjco.2
 |-  H e. CH
3 1 2 osumi
 |-  ( G C_ ( _|_ ` H ) -> ( G +H H ) = ( G vH H ) )
4 3 fveq2d
 |-  ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( projh ` ( G vH H ) ) )
5 1 2 pjscji
 |-  ( G C_ ( _|_ ` H ) -> ( projh ` ( G vH H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) )
6 4 5 eqtrd
 |-  ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) )