Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjco.1 | |- G e. CH |
|
pjco.2 | |- H e. CH |
||
Assertion | pjssumi | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.1 | |- G e. CH |
|
2 | pjco.2 | |- H e. CH |
|
3 | 1 2 | osumi | |- ( G C_ ( _|_ ` H ) -> ( G +H H ) = ( G vH H ) ) |
4 | 3 | fveq2d | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( projh ` ( G vH H ) ) ) |
5 | 1 2 | pjscji | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G vH H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) ) |
6 | 4 5 | eqtrd | |- ( G C_ ( _|_ ` H ) -> ( projh ` ( G +H H ) ) = ( ( projh ` G ) +op ( projh ` H ) ) ) |