Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
2
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` H ) ` x ) e. ~H ) |
4 |
|
normcl |
|- ( ( ( projh ` H ) ` x ) e. ~H -> ( normh ` ( ( projh ` H ) ` x ) ) e. RR ) |
5 |
3 4
|
syl |
|- ( x e. ~H -> ( normh ` ( ( projh ` H ) ` x ) ) e. RR ) |
6 |
5
|
resqcld |
|- ( x e. ~H -> ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) e. RR ) |
7 |
1
|
pjhcli |
|- ( x e. ~H -> ( ( projh ` G ) ` x ) e. ~H ) |
8 |
|
normcl |
|- ( ( ( projh ` G ) ` x ) e. ~H -> ( normh ` ( ( projh ` G ) ` x ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( x e. ~H -> ( normh ` ( ( projh ` G ) ` x ) ) e. RR ) |
10 |
9
|
resqcld |
|- ( x e. ~H -> ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) e. RR ) |
11 |
6 10
|
subge0d |
|- ( x e. ~H -> ( 0 <_ ( ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) - ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) ) <-> ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) ) ) |
12 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
13 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
14 |
|
hodval |
|- ( ( ( projh ` H ) : ~H --> ~H /\ ( projh ` G ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) ) |
15 |
12 13 14
|
mp3an12 |
|- ( x e. ~H -> ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) = ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) ) |
16 |
15
|
oveq1d |
|- ( x e. ~H -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) .ih x ) ) |
17 |
|
id |
|- ( x e. ~H -> x e. ~H ) |
18 |
|
his2sub |
|- ( ( ( ( projh ` H ) ` x ) e. ~H /\ ( ( projh ` G ) ` x ) e. ~H /\ x e. ~H ) -> ( ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) .ih x ) = ( ( ( ( projh ` H ) ` x ) .ih x ) - ( ( ( projh ` G ) ` x ) .ih x ) ) ) |
19 |
3 7 17 18
|
syl3anc |
|- ( x e. ~H -> ( ( ( ( projh ` H ) ` x ) -h ( ( projh ` G ) ` x ) ) .ih x ) = ( ( ( ( projh ` H ) ` x ) .ih x ) - ( ( ( projh ` G ) ` x ) .ih x ) ) ) |
20 |
2
|
pjinormi |
|- ( x e. ~H -> ( ( ( projh ` H ) ` x ) .ih x ) = ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) ) |
21 |
1
|
pjinormi |
|- ( x e. ~H -> ( ( ( projh ` G ) ` x ) .ih x ) = ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) ) |
22 |
20 21
|
oveq12d |
|- ( x e. ~H -> ( ( ( ( projh ` H ) ` x ) .ih x ) - ( ( ( projh ` G ) ` x ) .ih x ) ) = ( ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) - ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) ) ) |
23 |
16 19 22
|
3eqtrd |
|- ( x e. ~H -> ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) = ( ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) - ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) ) ) |
24 |
23
|
breq2d |
|- ( x e. ~H -> ( 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> 0 <_ ( ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) - ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) ) ) ) |
25 |
|
normge0 |
|- ( ( ( projh ` G ) ` x ) e. ~H -> 0 <_ ( normh ` ( ( projh ` G ) ` x ) ) ) |
26 |
7 25
|
syl |
|- ( x e. ~H -> 0 <_ ( normh ` ( ( projh ` G ) ` x ) ) ) |
27 |
|
normge0 |
|- ( ( ( projh ` H ) ` x ) e. ~H -> 0 <_ ( normh ` ( ( projh ` H ) ` x ) ) ) |
28 |
3 27
|
syl |
|- ( x e. ~H -> 0 <_ ( normh ` ( ( projh ` H ) ` x ) ) ) |
29 |
9 5 26 28
|
le2sqd |
|- ( x e. ~H -> ( ( normh ` ( ( projh ` G ) ` x ) ) <_ ( normh ` ( ( projh ` H ) ` x ) ) <-> ( ( normh ` ( ( projh ` G ) ` x ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` H ) ` x ) ) ^ 2 ) ) ) |
30 |
11 24 29
|
3bitr4d |
|- ( x e. ~H -> ( 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> ( normh ` ( ( projh ` G ) ` x ) ) <_ ( normh ` ( ( projh ` H ) ` x ) ) ) ) |
31 |
30
|
ralbiia |
|- ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> A. x e. ~H ( normh ` ( ( projh ` G ) ` x ) ) <_ ( normh ` ( ( projh ` H ) ` x ) ) ) |
32 |
1 2
|
pjnormssi |
|- ( G C_ H <-> A. x e. ~H ( normh ` ( ( projh ` G ) ` x ) ) <_ ( normh ` ( ( projh ` H ) ` x ) ) ) |
33 |
31 32
|
bitr4i |
|- ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> G C_ H ) |