Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|- G e. CH |
2 |
|
pjco.2 |
|- H e. CH |
3 |
1 2
|
pjssposi |
|- ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> G C_ H ) |
4 |
1
|
pjfoi |
|- ( projh ` G ) : ~H -onto-> G |
5 |
|
foima |
|- ( ( projh ` G ) : ~H -onto-> G -> ( ( projh ` G ) " ~H ) = G ) |
6 |
4 5
|
ax-mp |
|- ( ( projh ` G ) " ~H ) = G |
7 |
2
|
pjfoi |
|- ( projh ` H ) : ~H -onto-> H |
8 |
|
foima |
|- ( ( projh ` H ) : ~H -onto-> H -> ( ( projh ` H ) " ~H ) = H ) |
9 |
7 8
|
ax-mp |
|- ( ( projh ` H ) " ~H ) = H |
10 |
6 9
|
sseq12i |
|- ( ( ( projh ` G ) " ~H ) C_ ( ( projh ` H ) " ~H ) <-> G C_ H ) |
11 |
3 10
|
bitr4i |
|- ( A. x e. ~H 0 <_ ( ( ( ( projh ` H ) -op ( projh ` G ) ) ` x ) .ih x ) <-> ( ( projh ` G ) " ~H ) C_ ( ( projh ` H ) " ~H ) ) |