Metamath Proof Explorer


Theorem sseq12i

Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses sseq1i.1
|- A = B
sseq12i.2
|- C = D
Assertion sseq12i
|- ( A C_ C <-> B C_ D )

Proof

Step Hyp Ref Expression
1 sseq1i.1
 |-  A = B
2 sseq12i.2
 |-  C = D
3 sseq12
 |-  ( ( A = B /\ C = D ) -> ( A C_ C <-> B C_ D ) )
4 1 2 3 mp2an
 |-  ( A C_ C <-> B C_ D )