Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1 2
|
pjssposi |
⊢ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺 ⊆ 𝐻 ) |
4 |
1
|
pjfoi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ –onto→ 𝐺 |
5 |
|
foima |
⊢ ( ( projℎ ‘ 𝐺 ) : ℋ –onto→ 𝐺 → ( ( projℎ ‘ 𝐺 ) “ ℋ ) = 𝐺 ) |
6 |
4 5
|
ax-mp |
⊢ ( ( projℎ ‘ 𝐺 ) “ ℋ ) = 𝐺 |
7 |
2
|
pjfoi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |
8 |
|
foima |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 → ( ( projℎ ‘ 𝐻 ) “ ℋ ) = 𝐻 ) |
9 |
7 8
|
ax-mp |
⊢ ( ( projℎ ‘ 𝐻 ) “ ℋ ) = 𝐻 |
10 |
6 9
|
sseq12i |
⊢ ( ( ( projℎ ‘ 𝐺 ) “ ℋ ) ⊆ ( ( projℎ ‘ 𝐻 ) “ ℋ ) ↔ 𝐺 ⊆ 𝐻 ) |
11 |
3 10
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( ( projℎ ‘ 𝐺 ) “ ℋ ) ⊆ ( ( projℎ ‘ 𝐻 ) “ ℋ ) ) |