Metamath Proof Explorer


Theorem pjssdif2i

Description: The projection subspace of the difference between two projectors. Part 2 of Theorem 29.3 of Halmos p. 48 (shortened with pjssposi ). (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjssdif2i ( 𝐺𝐻 ↔ ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 2 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
4 1 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
5 hodval ( ( ( proj𝐻 ) : ℋ ⟶ ℋ ∧ ( proj𝐺 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) )
6 3 4 5 mp3an12 ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) )
7 6 adantl ( ( 𝐺𝐻𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) )
8 2 1 pjssmi ( 𝑥 ∈ ℋ → ( 𝐺𝐻 → ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) )
9 8 impcom ( ( 𝐺𝐻𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) )
10 7 9 eqtrd ( ( 𝐺𝐻𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) )
11 10 ralrimiva ( 𝐺𝐻 → ∀ 𝑥 ∈ ℋ ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) )
12 3 4 hosubfni ( ( proj𝐻 ) −op ( proj𝐺 ) ) Fn ℋ
13 1 choccli ( ⊥ ‘ 𝐺 ) ∈ C
14 2 13 chincli ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ∈ C
15 14 pjfni ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) Fn ℋ
16 eqfnfv ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) Fn ℋ ∧ ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) Fn ℋ ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) )
17 12 15 16 mp2an ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) )
18 11 17 sylibr ( 𝐺𝐻 → ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) )
19 14 pjige0i ( 𝑥 ∈ ℋ → 0 ≤ ( ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
20 19 adantl ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
21 fveq1 ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) )
22 21 oveq1d ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
23 22 adantr ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
24 20 23 breqtrrd ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
25 24 ralrimiva ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) )
26 1 2 pjssposi ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺𝐻 )
27 25 26 sylib ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → 𝐺𝐻 )
28 18 27 impbii ( 𝐺𝐻 ↔ ( ( proj𝐻 ) −op ( proj𝐺 ) ) = ( proj ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) )