Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
4 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
5 |
|
hodval |
⊢ ( ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ ∧ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
6 |
3 4 5
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
8 |
2 1
|
pjssmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ 𝐻 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) ) |
9 |
8
|
impcom |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) |
10 |
7 9
|
eqtrd |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) |
11 |
10
|
ralrimiva |
⊢ ( 𝐺 ⊆ 𝐻 → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) |
12 |
3 4
|
hosubfni |
⊢ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) Fn ℋ |
13 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
14 |
2 13
|
chincli |
⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ∈ Cℋ |
15 |
14
|
pjfni |
⊢ ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) Fn ℋ |
16 |
|
eqfnfv |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) Fn ℋ ∧ ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) Fn ℋ ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) ) |
17 |
12 15 16
|
mp2an |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) |
18 |
11 17
|
sylibr |
⊢ ( 𝐺 ⊆ 𝐻 → ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ) |
19 |
14
|
pjige0i |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
21 |
|
fveq1 |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
24 |
20 23
|
breqtrrd |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
25 |
24
|
ralrimiva |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
26 |
1 2
|
pjssposi |
⊢ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺 ⊆ 𝐻 ) |
27 |
25 26
|
sylib |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → 𝐺 ⊆ 𝐻 ) |
28 |
18 27
|
impbii |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ) |