Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1 2
|
pjssdif2i |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ) |
4 |
|
pjmfn |
⊢ projℎ Fn Cℋ |
5 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
6 |
2 5
|
chincli |
⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ∈ Cℋ |
7 |
|
fnfvelrn |
⊢ ( ( projℎ Fn Cℋ ∧ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ∈ Cℋ ) → ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∈ ran projℎ ) |
8 |
4 6 7
|
mp2an |
⊢ ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∈ ran projℎ |
9 |
|
eleq1 |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ↔ ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ∈ ran projℎ ) ) |
10 |
8 9
|
mpbiri |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) → ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ) |
11 |
|
fvelrnb |
⊢ ( projℎ Fn Cℋ → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ↔ ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) ) |
12 |
4 11
|
ax-mp |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ↔ ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) |
13 |
|
pjige0 |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
15 |
|
fveq1 |
⊢ ( ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) = ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ) |
16 |
15
|
oveq1d |
⊢ ( ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) ·ih 𝑦 ) = ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
17 |
16
|
breq2d |
⊢ ( ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) → ( 0 ≤ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) ·ih 𝑦 ) ↔ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ℋ ) → ( 0 ≤ ( ( ( projℎ ‘ 𝑥 ) ‘ 𝑦 ) ·ih 𝑦 ) ↔ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) ) |
19 |
14 18
|
mpbid |
⊢ ( ( ( 𝑥 ∈ Cℋ ∧ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝑥 ∈ Cℋ ∧ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ) → ∀ 𝑦 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
21 |
20
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ Cℋ ( projℎ ‘ 𝑥 ) = ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) → ∀ 𝑦 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
22 |
12 21
|
sylbi |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ → ∀ 𝑦 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ) |
23 |
1 2
|
pjssposi |
⊢ ( ∀ 𝑦 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ↔ 𝐺 ⊆ 𝐻 ) |
24 |
23 3
|
bitri |
⊢ ( ∀ 𝑦 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑦 ) ·ih 𝑦 ) ↔ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ) |
25 |
22 24
|
sylib |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ → ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ) |
26 |
10 25
|
impbii |
⊢ ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ↔ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ) |
27 |
3 26
|
bitri |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ∈ ran projℎ ) |