Metamath Proof Explorer


Theorem pjige0

Description: The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjige0 ( ( 𝐻C𝐴 ∈ ℋ ) → 0 ≤ ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) )
2 1 fveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ‘ 𝐴 ) )
3 2 oveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ‘ 𝐴 ) ·ih 𝐴 ) )
4 3 breq2d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( 0 ≤ ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ↔ 0 ≤ ( ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) )
5 4 imbi2d ( 𝐻 = if ( 𝐻C , 𝐻 , 0 ) → ( ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ↔ ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) )
6 h0elch 0C
7 6 elimel if ( 𝐻C , 𝐻 , 0 ) ∈ C
8 7 pjige0i ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( proj ‘ if ( 𝐻C , 𝐻 , 0 ) ) ‘ 𝐴 ) ·ih 𝐴 ) )
9 5 8 dedth ( 𝐻C → ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) )
10 9 imp ( ( 𝐻C𝐴 ∈ ℋ ) → 0 ≤ ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) )