Metamath Proof Explorer


Theorem pjssposi

Description: Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of Halmos p. 48. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjssposi ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺𝐻 )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 2 pjhcli ( 𝑥 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ )
4 normcl ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ∈ ℝ )
5 3 4 syl ( 𝑥 ∈ ℋ → ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ∈ ℝ )
6 5 resqcld ( 𝑥 ∈ ℋ → ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ )
7 1 pjhcli ( 𝑥 ∈ ℋ → ( ( proj𝐺 ) ‘ 𝑥 ) ∈ ℋ )
8 normcl ( ( ( proj𝐺 ) ‘ 𝑥 ) ∈ ℋ → ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ∈ ℝ )
9 7 8 syl ( 𝑥 ∈ ℋ → ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ∈ ℝ )
10 9 resqcld ( 𝑥 ∈ ℋ → ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ )
11 6 10 subge0d ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ↔ ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ) )
12 2 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
13 1 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
14 hodval ( ( ( proj𝐻 ) : ℋ ⟶ ℋ ∧ ( proj𝐺 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) )
15 12 13 14 mp3an12 ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) = ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) )
16 15 oveq1d ( 𝑥 ∈ ℋ → ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) )
17 id ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ )
18 his2sub ( ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( proj𝐺 ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( proj𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
19 3 7 17 18 syl3anc ( 𝑥 ∈ ℋ → ( ( ( ( proj𝐻 ) ‘ 𝑥 ) − ( ( proj𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( proj𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
20 2 pjinormi ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) )
21 1 pjinormi ( 𝑥 ∈ ℋ → ( ( ( proj𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) )
22 20 21 oveq12d ( 𝑥 ∈ ℋ → ( ( ( ( proj𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( proj𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) )
23 16 19 22 3eqtrd ( 𝑥 ∈ ℋ → ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) )
24 23 breq2d ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) )
25 normge0 ( ( ( proj𝐺 ) ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) )
26 7 25 syl ( 𝑥 ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) )
27 normge0 ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
28 3 27 syl ( 𝑥 ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
29 9 5 26 28 le2sqd ( 𝑥 ∈ ℋ → ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↔ ( ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ) )
30 11 24 29 3bitr4d ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) ) )
31 30 ralbiia ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
32 1 2 pjnormssi ( 𝐺𝐻 ↔ ∀ 𝑥 ∈ ℋ ( norm ‘ ( ( proj𝐺 ) ‘ 𝑥 ) ) ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
33 31 32 bitr4i ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( proj𝐻 ) −op ( proj𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺𝐻 )