| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
2
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ ) |
| 4 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 6 |
5
|
resqcld |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) |
| 7 |
1
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) |
| 8 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 10 |
9
|
resqcld |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) |
| 11 |
6 10
|
subge0d |
⊢ ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 12 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 13 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 14 |
|
hodval |
⊢ ( ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ ∧ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 15 |
12 13 14
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 17 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
| 18 |
|
his2sub |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 19 |
3 7 17 18
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 20 |
2
|
pjinormi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ) |
| 21 |
1
|
pjinormi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ·ih 𝑥 ) − ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ·ih 𝑥 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 23 |
16 19 22
|
3eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 24 |
23
|
breq2d |
⊢ ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) ) |
| 25 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 26 |
7 25
|
syl |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 27 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 28 |
3 27
|
syl |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 29 |
9 5 26 28
|
le2sqd |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 30 |
11 24 29
|
3bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
| 31 |
30
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 32 |
1 2
|
pjnormssi |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 33 |
31 32
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) −op ( projℎ ‘ 𝐺 ) ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 𝐺 ⊆ 𝐻 ) |