Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2 1
|
pjssmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ 𝐻 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) ) ) |
4 |
2 1
|
pjssge0i |
⊢ ( 𝑥 ∈ ℋ → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ) ‘ 𝑥 ) → 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) ) ) |
5 |
3 4
|
syld |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ 𝐻 → 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) ) ) |
6 |
2 1
|
pjdifnormi |
⊢ ( 𝑥 ∈ ℋ → ( 0 ≤ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ·ih 𝑥 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
7 |
5 6
|
sylibd |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ 𝐻 → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
8 |
7
|
com12 |
⊢ ( 𝐺 ⊆ 𝐻 → ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( 𝐺 ⊆ 𝐻 → ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
10 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
11 |
10
|
cheli |
⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ℋ ) |
12 |
|
breq2 |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ) ) |
13 |
12
|
biimpac |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ) |
14 |
1
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ ) |
15 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
17 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
18 |
14 17
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
19 |
|
0re |
⊢ 0 ∈ ℝ |
20 |
|
letri3 |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
21 |
20
|
biimprd |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
22 |
18 19 21
|
sylancl |
⊢ ( 𝑥 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
23 |
16 22
|
sylan2i |
⊢ ( 𝑥 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
24 |
23
|
anabsi6 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 0 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
25 |
13 24
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ) ) → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) |
26 |
25
|
expr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ) ) |
27 |
2
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ ) |
28 |
|
norm-i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) |
29 |
27 28
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) |
30 |
|
pjoc2 |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) |
31 |
2 30
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) |
32 |
29 31
|
bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ↔ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0 ↔ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ) ) |
34 |
|
norm-i |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) = 0ℎ ) ) |
35 |
14 34
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) = 0ℎ ) ) |
36 |
|
pjoc2 |
⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) = 0ℎ ) ) |
37 |
1 36
|
mpan |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) = 0ℎ ) ) |
38 |
35 37
|
bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) = 0 ↔ 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
40 |
26 33 39
|
3imtr3d |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
41 |
40
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) ) |
42 |
41
|
a2i |
⊢ ( ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) ) |
43 |
11 42
|
syl5 |
⊢ ( ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) ) |
44 |
43
|
pm2.43d |
⊢ ( ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
45 |
44
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) → ∀ 𝑥 ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
46 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
47 |
|
dfss2 |
⊢ ( ( ⊥ ‘ 𝐻 ) ⊆ ( ⊥ ‘ 𝐺 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) → 𝑥 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
48 |
45 46 47
|
3imtr4i |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) → ( ⊥ ‘ 𝐻 ) ⊆ ( ⊥ ‘ 𝐺 ) ) |
49 |
1 2
|
chsscon3i |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ⊥ ‘ 𝐻 ) ⊆ ( ⊥ ‘ 𝐺 ) ) |
50 |
48 49
|
sylibr |
⊢ ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) → 𝐺 ⊆ 𝐻 ) |
51 |
9 50
|
impbii |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |