Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
|
2 |
|
pjco.2 |
|
3 |
2 1
|
pjssmi |
|
4 |
2 1
|
pjssge0i |
|
5 |
3 4
|
syld |
|
6 |
2 1
|
pjdifnormi |
|
7 |
5 6
|
sylibd |
|
8 |
7
|
com12 |
|
9 |
8
|
ralrimiv |
|
10 |
2
|
choccli |
|
11 |
10
|
cheli |
|
12 |
|
breq2 |
|
13 |
12
|
biimpac |
|
14 |
1
|
pjhcli |
|
15 |
|
normge0 |
|
16 |
14 15
|
syl |
|
17 |
|
normcl |
|
18 |
14 17
|
syl |
|
19 |
|
0re |
|
20 |
|
letri3 |
|
21 |
20
|
biimprd |
|
22 |
18 19 21
|
sylancl |
|
23 |
16 22
|
sylan2i |
|
24 |
23
|
anabsi6 |
|
25 |
13 24
|
sylan2 |
|
26 |
25
|
expr |
|
27 |
2
|
pjhcli |
|
28 |
|
norm-i |
|
29 |
27 28
|
syl |
|
30 |
|
pjoc2 |
|
31 |
2 30
|
mpan |
|
32 |
29 31
|
bitr4d |
|
33 |
32
|
adantr |
|
34 |
|
norm-i |
|
35 |
14 34
|
syl |
|
36 |
|
pjoc2 |
|
37 |
1 36
|
mpan |
|
38 |
35 37
|
bitr4d |
|
39 |
38
|
adantr |
|
40 |
26 33 39
|
3imtr3d |
|
41 |
40
|
ex |
|
42 |
41
|
a2i |
|
43 |
11 42
|
syl5 |
|
44 |
43
|
pm2.43d |
|
45 |
44
|
alimi |
|
46 |
|
df-ral |
|
47 |
|
dfss2 |
|
48 |
45 46 47
|
3imtr4i |
|
49 |
1 2
|
chsscon3i |
|
50 |
48 49
|
sylibr |
|
51 |
9 50
|
impbii |
|