Metamath Proof Explorer


Theorem pjoc2

Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoc2 HCAAHprojHA=0

Proof

Step Hyp Ref Expression
1 fveq2 H=ifHCH0H=ifHCH0
2 1 eleq2d H=ifHCH0AHAifHCH0
3 fveq2 H=ifHCH0projH=projifHCH0
4 3 fveq1d H=ifHCH0projHA=projifHCH0A
5 4 eqeq1d H=ifHCH0projHA=0projifHCH0A=0
6 2 5 bibi12d H=ifHCH0AHprojHA=0AifHCH0projifHCH0A=0
7 eleq1 A=ifAA0AifHCH0ifAA0ifHCH0
8 fveqeq2 A=ifAA0projifHCH0A=0projifHCH0ifAA0=0
9 7 8 bibi12d A=ifAA0AifHCH0projifHCH0A=0ifAA0ifHCH0projifHCH0ifAA0=0
10 h0elch 0C
11 10 elimel ifHCH0C
12 ifhvhv0 ifAA0
13 11 12 pjoc2i ifAA0ifHCH0projifHCH0ifAA0=0
14 6 9 13 dedth2h HCAAHprojHA=0