Metamath Proof Explorer


Theorem pjoc2i

Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoc2.1 HC
pjoc2.2 A
Assertion pjoc2i AHprojHA=0

Proof

Step Hyp Ref Expression
1 pjoc2.1 HC
2 pjoc2.2 A
3 1 choccli HC
4 3 2 pjoc1i AHprojHA=0
5 1 pjococi H=H
6 5 fveq2i projH=projH
7 6 fveq1i projHA=projHA
8 7 eqeq1i projHA=0projHA=0
9 4 8 bitri AHprojHA=0