Metamath Proof Explorer


Theorem pjoc2i

Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoc2.1 𝐻C
pjoc2.2 𝐴 ∈ ℋ
Assertion pjoc2i ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 pjoc2.1 𝐻C
2 pjoc2.2 𝐴 ∈ ℋ
3 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
4 3 2 pjoc1i ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( proj ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 0 )
5 1 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻
6 5 fveq2i ( proj ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( proj𝐻 )
7 6 fveq1i ( ( proj ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = ( ( proj𝐻 ) ‘ 𝐴 )
8 7 eqeq1i ( ( ( proj ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 0 ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 0 )
9 4 8 bitri ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( proj𝐻 ) ‘ 𝐴 ) = 0 )