Metamath Proof Explorer


Theorem norm-i

Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion norm-i AnormA=0A=0

Proof

Step Hyp Ref Expression
1 normgt0 AA00<normA
2 normcl AnormA
3 normge0 A0normA
4 0re 0
5 leltne 0normA0normA0<normAnormA0
6 4 5 mp3an1 normA0normA0<normAnormA0
7 2 3 6 syl2anc A0<normAnormA0
8 1 7 bitrd AA0normA0
9 8 necon4bid AA=0normA=0
10 9 bicomd AnormA=0A=0