Metamath Proof Explorer


Theorem normgt0

Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion normgt0 AA00<normA

Proof

Step Hyp Ref Expression
1 hiidrcl AAihA
2 1 adantr AA0AihA
3 ax-his4 AA00<AihA
4 sqrtgt0 AihA0<AihA0<AihA
5 2 3 4 syl2anc AA00<AihA
6 5 ex AA00<AihA
7 oveq1 A=0AihA=0ihA
8 hi01 A0ihA=0
9 7 8 sylan9eqr AA=0AihA=0
10 9 fveq2d AA=0AihA=0
11 sqrt0 0=0
12 10 11 eqtrdi AA=0AihA=0
13 12 ex AA=0AihA=0
14 hiidge0 A0AihA
15 1 14 resqrtcld AAihA
16 0re 0
17 lttri3 AihA0AihA=0¬AihA<0¬0<AihA
18 15 16 17 sylancl AAihA=0¬AihA<0¬0<AihA
19 simpr ¬AihA<0¬0<AihA¬0<AihA
20 18 19 syl6bi AAihA=0¬0<AihA
21 13 20 syld AA=0¬0<AihA
22 21 necon2ad A0<AihAA0
23 6 22 impbid AA00<AihA
24 normval AnormA=AihA
25 24 breq2d A0<normA0<AihA
26 23 25 bitr4d AA00<normA