Metamath Proof Explorer


Theorem norm0

Description: The norm of a zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion norm0 norm0=0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 normval 0norm0=0ih0
3 1 2 ax-mp norm0=0ih0
4 hi01 00ih0=0
5 4 fveq2d 00ih0=0
6 1 5 ax-mp 0ih0=0
7 sqrt0 0=0
8 3 6 7 3eqtri norm0=0