Step |
Hyp |
Ref |
Expression |
1 |
|
pjco.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjco.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
2
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) |
4 |
1 2
|
chsscon2i |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ↔ 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) ) |
5 |
|
ssel |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) ) |
6 |
4 5
|
sylbi |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) ) |
7 |
3 6
|
syl5com |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) ) |
8 |
2
|
pjhcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ ) |
9 |
|
pjoc2 |
⊢ ( ( 𝐺 ∈ Cℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0ℎ ) ) |
10 |
1 8 9
|
sylancr |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0ℎ ) ) |
11 |
7 10
|
sylibd |
⊢ ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0ℎ ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) = 0ℎ ) |
13 |
1 2
|
pjcoi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ 𝐺 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
15 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
16 |
15
|
adantl |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
17 |
12 14 16
|
3eqtr4d |
⊢ ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
18 |
17
|
ralrimiva |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
19 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
20 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
21 |
19 20
|
hocofi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) : ℋ ⟶ ℋ |
22 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
23 |
21 22
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = 0hop ) |
24 |
18 23
|
sylib |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = 0hop ) |