Metamath Proof Explorer


Theorem pjorthcoi

Description: Composition of projections of orthogonal subspaces. Part (i)->(iia) of Theorem 27.4 of Halmos p. 45. (Contributed by NM, 6-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 𝐺C
pjco.2 𝐻C
Assertion pjorthcoi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = 0hop )

Proof

Step Hyp Ref Expression
1 pjco.1 𝐺C
2 pjco.2 𝐻C
3 2 pjcli ( 𝑥 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻 )
4 1 2 chsscon2i ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ↔ 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) )
5 ssel ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻 → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) )
6 4 5 sylbi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻 → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) )
7 3 6 syl5com ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ) )
8 2 pjhcli ( 𝑥 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ )
9 pjoc2 ( ( 𝐺C ∧ ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) = 0 ) )
10 1 8 9 sylancr ( 𝑥 ∈ ℋ → ( ( ( proj𝐻 ) ‘ 𝑥 ) ∈ ( ⊥ ‘ 𝐺 ) ↔ ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) = 0 ) )
11 7 10 sylibd ( 𝑥 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) = 0 ) )
12 11 impcom ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) = 0 )
13 1 2 pjcoi ( 𝑥 ∈ ℋ → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝑥 ) = ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
14 13 adantl ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝑥 ) = ( ( proj𝐺 ) ‘ ( ( proj𝐻 ) ‘ 𝑥 ) ) )
15 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
16 15 adantl ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( 0hop𝑥 ) = 0 )
17 12 14 16 3eqtr4d ( ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
18 17 ralrimiva ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ∀ 𝑥 ∈ ℋ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
19 1 pjfi ( proj𝐺 ) : ℋ ⟶ ℋ
20 2 pjfi ( proj𝐻 ) : ℋ ⟶ ℋ
21 19 20 hocofi ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) : ℋ ⟶ ℋ
22 ho0f 0hop : ℋ ⟶ ℋ
23 21 22 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ‘ 𝑥 ) = ( 0hop𝑥 ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = 0hop )
24 18 23 sylib ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = 0hop )