| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choc1 |
⊢ ( ⊥ ‘ ℋ ) = 0ℋ |
| 2 |
1
|
fveq2i |
⊢ ( projℎ ‘ ( ⊥ ‘ ℋ ) ) = ( projℎ ‘ 0ℋ ) |
| 3 |
|
df-h0op |
⊢ 0hop = ( projℎ ‘ 0ℋ ) |
| 4 |
2 3
|
eqtr4i |
⊢ ( projℎ ‘ ( ⊥ ‘ ℋ ) ) = 0hop |
| 5 |
4
|
fveq1i |
⊢ ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( 0hop ‘ 𝐴 ) |
| 6 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 7 |
|
pjo |
⊢ ( ( ℋ ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 8 |
6 7
|
mpan |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ( ⊥ ‘ ℋ ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 9 |
5 8
|
eqtr3id |
⊢ ( 𝐴 ∈ ℋ → ( 0hop ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 10 |
6
|
pjhcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 11 |
|
hvsubid |
⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) |
| 13 |
9 12
|
eqtrd |
⊢ ( 𝐴 ∈ ℋ → ( 0hop ‘ 𝐴 ) = 0ℎ ) |